Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 2612-2623, 2023.
Article in Chinese | WPRIM | ID: wpr-981219

ABSTRACT

Excessive levels of cadmium (Cd) in soil exert serious negative impacts on soil ecosystems. Microorganisms are a common component of soil and show great potential for mitigating soil Cd. This review summarizes the application and remediation mechanisms of microorganisms, microbial-plants, and microbial-biochar in Cd-contaminated soil. Microorganisms such as Bacillus, Acinetobacter, Pseudomonas, and arbuscular mycorrhizal fungi (AMF) can change the biological validity of Cd through adsorption, mineralization, precipitation and dissolution. Different factors such as pH, temperature, biomass, concentration, and duration have significant effects on Cd bioavailability by microorganisms. Pseudomonas, Burkholderia, and Flavobacterium can promote the uptake of Cd2+ by hyperaccumulator through promotion and activation. Biochar, a soil amendment, possesses unique physicochemical properties and could act as a shelter for microorganisms in agriculture. The use of combined microbial-biochar can further stabilize Cd compared to using biochar alone.


Subject(s)
Cadmium , Ecosystem , Soil Pollutants , Charcoal/chemistry , Soil/chemistry
2.
Chinese Journal of Biotechnology ; (12): 287-302, 2022.
Article in Chinese | WPRIM | ID: wpr-927712

ABSTRACT

As a non-essential metal, cadmium (Cd) pollution poses severe threats to plant growth, environment, and human health. Phytoextraction using nursery stocks prior to their transplantation is a potential useful approach for bioremediation of Cd contaminated soil. A greenhouse pot experiment was performed to investigate the growth, Cd accumulation, profiles of transcriptome as well as root-associated microbiomes of Photinia frase in Cd-added soil, upon inoculation of two types of arbuscular mycorrhizal fungi (AMF) Sieverdingia tortuosa and Funneliformis mosseae. Compared with the control, inoculation of F. mosseae increased Cd concentrations in root, stem and leaf by 57.2%, 44.1% and 71.1%, respectively, contributing to a total Cd content of 182 μg/plant. KEGG pathway analysis revealed that hundreds of genes involved in 'Mitogen-activated protein kinase (MAPK) signaling pathway', 'plant hormone signal transduction', 'biosynthesis of secondary metabolites' and 'glycolysis/gluconeogenesis' were enriched upon inoculation of F. mosseae. The relative abundance of Acidobacteria was increased upon inoculation of S. tortuosa, while Chloroflexi and Patescibacteria were increased upon inoculation of F. mosseae, and the abundance of Glomerales increased from 23.0% to above 70%. Correlation analysis indicated that ethylene-responsive transcription factor, alpha-aminoadipic semialdehyde synthase, isoamylase and agmatine deiminase related genes were negatively associated with the relative abundance of Glomerales operational taxonomic units (OTUs) upon inoculation of F. mosseae. In addition, plant cysteine oxidase, heat shock protein, cinnamoyl-CoA reductase and abscisic acid receptor related genes were positively associated with the relative abundance of Patescibacteria OTUs upon inoculation of F. mosseae. These finding suggested that AMF can enhance P. frase Cd uptake by modulating plant gene expression and altering the structure of the soil microbial community. This study provides a theoretical basis for better understanding the relationship between root-associated microbiomes and root transcriptomes of P. frase, from which a cost-effective and environment-friendly strategy for phytoextraction of Cd in Cd-polluted soil might be developed.


Subject(s)
Humans , Cadmium , Microbiota , Mycorrhizae , Photinia , Soil Pollutants , Transcriptome
3.
Chinese Journal of Biotechnology ; (12): 2463-2473, 2021.
Article in Chinese | WPRIM | ID: wpr-887812

ABSTRACT

The hydroponic culture test method was used to study the physiological and biochemical responses of Paulownia fortunei seedlings under Zn stress, Cd stress, and combined Zn and Cd stress as well as changes in the enrichment and transfer characteristics of heavy metals. Under single and combined heavy metal stress, the biomass, plant height, and peroxidase (POD) activity of P. fortunei decreased as the treatment concentration increased. Combined Zn and Cd affected adversely plant height and biomass. As the concentration of Zn increased when applied alone, the chlorophyll content and catalase (CAT) activity of P. fortunei first increased and then decreased, the superoxide dismutase (SOD) activity increased, and the aboveground malondialdehyde (MDA) content first decreased and then increased. As the concentration of Cd increased when applied alone, chlorophyll content and CAT activity increased, and SOD activity and aboveground MDA content first increased and then decreased. Under both Cd and Zn, the physiological response was more complex. Cd in the seedlings of P. fortunei was concentrated in the root. In contrast, Zn was concentrated in the upper part of the ground, and its transfer coefficient was greater than 1.00. Thus, the addition of Zn promotes the transfer of heavy metals to the above-ground portions of plants. Generally, P. fortunei can effectively promote ecological restoration under complex forms of heavy metal pollution.


Subject(s)
Cadmium , Chlorophyll , Metals, Heavy , Plant Roots/chemistry , Seedlings , Soil Pollutants , Stress, Physiological , Superoxide Dismutase , Zinc
4.
China Journal of Chinese Materia Medica ; (24): 3267-3274, 2017.
Article in Chinese | WPRIM | ID: wpr-335861

ABSTRACT

As the limit of the usage of available forest land, cultivated ginseng in the farmland would become the mainly Panax ginseng planting mode, meanwhile the non-polluted production technology would be the mainly development direction in the future. In this study, the non-polluted cultivation technology system of P. ginseng was established based on the research results of field investigation in the cultivated regions. The system includes suitable planting regions selecting, planting method, field management, pest control, harvesting & processing, and quality control. Aimed at the serious issues in the cultivation, research strategies have been provided to guarantee the sustainable development of the ginseng industry. The patterns of soil restoration after P. ginseng cultivation, establishment the platform of comprehensive disease & pest control, breeding new varieties for high stress tolerance and resistance, and a traceability system for P. ginseng cultivation. In all, these strategies was considered to largely developing of the ginseng industry in the green and sustainable way.

SELECTION OF CITATIONS
SEARCH DETAIL